澳门新葡新京,澳门新葡新京官方网站

欢迎来到:澳门新葡新京!

学术报告
当前位置: 澳门新葡新京 > 学术报告 > 正文
Geometric and arithmetic properties of Besicovitch sets
编辑:      澳门新葡新京:2017-09-05       点击数:
报告时间 报告地点
报告人

学术报告:Geometric and arithmetic properties of Besicovitch sets

报告题目:Geometric and arithmetic properties of Besicovitch sets

报告摘要:Besicovitch sets are related to many mathematic fields. For instance, fractal geometry, harmonic analysis, and combinatorics. In this talk, we introduce the definition of Besicovitch sets and Kakeya conjecture. We show some known results by applying geometric methods and Bourgain's arithmetic method. As a corollary of above arguments, we obtain the lower bounds estimates for the box dimension of Besicovitch sets.

主办单位:澳门新葡新京

报告专家:陈昌昊

报告时间:2017年9月9日(周六)14:00-15:00

报告地点:澳门新葡新京203会议室

专家概况:陈昌昊,男,New South Wales(悉尼)博士后,Oulu大学(芬兰)博士,期间研究内容有projections of fractal sets, Kakeya problem, metric Diophantine approximation, Fourier transform of measures, doubling measures, quasiconformal mappings, dynamical systems, etc.期间在Illinosis Journal of Mathematics、Ann. Acad. Sci. Fenn. Math.、Ark. Mat.等杂志发表SCI论文进二十篇。先后参加十余场国际会议,并多次作报告。


Copyright ©版权所有:澳门新葡新京

地址:湖北省武汉市武昌区友谊大道368号 邮政编码:430062

Email:stxy@hubu.edu.cn 电话:027-88662127

XML 地图 | Sitemap 地图